Spectral Norm of Random Kernel Matrices with Applications to Privacy
نویسندگان
چکیده
Kernel methods are an extremely popular set of techniques used for many important machine learning and data analysis applications. In addition to having good practical performance, these methods are supported by a well-developed theory. Kernel methods use an implicit mapping of the input data into a high dimensional feature space defined by a kernel function, i.e., a function returning the inner product between the images of two data points in the feature space. Central to any kernel method is the kernel matrix, which is built by evaluating the kernel function on a given sample dataset. In this paper, we initiate the study of non-asymptotic spectral theory of random kernel matrices. These are n × n random matrices whose (i, j)th entry is obtained by evaluating the kernel function on xi and xj , where x1, . . . ,xn are a set of n independent random high-dimensional vectors. Our main contribution is to obtain tight upper bounds on the spectral norm (largest eigenvalue) of random kernel matrices constructed by commonly used kernel functions based on polynomials and Gaussian radial basis. As an application of these results, we provide lower bounds on the distortion needed for releasing the coefficients of kernel ridge regression under attribute privacy, a general privacy notion which captures a large class of privacy definitions. Kernel ridge regression is standard method for performing non-parametric regression that regularly outperforms traditional regression approaches in various domains. Our privacy distortion lower bounds are the first for any kernel technique, and our analysis assumes realistic scenarios for the input, unlike all previous lower bounds for other release problems which only hold under very restrictive input settings.
منابع مشابه
Cartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملTHE SPECTRAL NORM OF RANDOM INNER-PRODUCT KERNEL MATRICES By
We study the spectra of p×p random matrices K with off-diagonal (i, j) entry equal to n−1/2k(XT i Xj/n ), where Xi’s are the rows of a p× n matrix with i.i.d. entries and k is a scalar function. It is known that under mild conditions, as n and p increase proportionally, the empirical spectral measure of K converges to a deterministic limit μ. We prove that if k is a polynomial and the distribut...
متن کاملRevisiting the Nystrom method for improved large-scale machine learning
We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our resul...
متن کاملOn Low-Space Differentially Private Low-rank Factorization in the Spectral Norm
Low-rank factorization is used in many areas of computer science where one performs spectral analysis on large sensitive data stored in the form of matrices. In this paper, we study differentially private low-rank factorization of a matrix with respect to the spectral norm in the turnstile update model. In this problem, given an input matrix A ∈ Rm×n updated in the turnstile manner and a target...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015